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Ch.1 Zeros of Functions

Here we seek a soln of a single egn involving one unknown.

Example 1: Solve the eqn for z: e™* = cosz.

Zero Form Root Form

e ¥ —cosx = 0 e’ = cosx
flz) =0 Any eqn in zero form.
A solnis called a of . |Asolnis called a of eqn.
A zero of fis an Most of the mthds require
of the of 1. the egn in form.
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Zeros of Functions

Approx the soln of f(z) = 0.
Y y = f(x)

-] —

0

-1

[VVVeWIIet z denote the
_3—
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Intermediate Value Theorem (IVT)
Supp. ftn f(x) is on interval [a, b] and that f(a) and f(b)

have signs. Then f(x) has one zero b/w
AN
ST fla)e
|
|
: b
| : >
a I x
I
I
é f(b)
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Bisection Method | Interval Halving

To approx. a zero of ftn f(x), select a starting interval [a, b] satisfying the

We reserve a and b for the of the

interval.

For computational convenience, we denote a by z, and b by ., and let

. *
Ensure that y, and y,. have signs.
* So the points (z,,,) and (z, ,y,) are on the of ftn f(x) and are on opposite sides of the ___ axis.
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|So|ve flz) = 0 forx

Example 2. Approx. the first positive soln of ¢™* = cosu.

First write the eqn in

form:

9. What is a good
starting interval?

We'll use a starting
interval of
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f(x) = e ¥ —cosx o
Yrs
T, + :
4 I %, £ 5 s
r%) = .
(2) — :
Tm Ym = f(Tm) | &
.1753) = -
iy E T
1 E
- N
Yo ®
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e eae Solve f(z) = 0 for z
General Definitions | ‘
1. Each z,,, called an , approxs the zero z of ftn f".

2. The process of repeating steps to obtain each iterate is called an

3. Performing iterations is called

With enough iterations, the iterates converge to z: 9. Whatis
When convenient, we'll let a;,(,:;) denote the iterate.
(4) G .
E.g., &’ is the iterate.
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T, + 2 .
= ~€2—£ Use radians!

Do Ex 2. f(z) = e ® —cosz,

Iter n = 1:

| | always use more digits than | display. l

z, = 2.0, y. = f(z,) = f(2) = +0.5514..., previous slide.
Sign Test: s Ym oy

So the zero of fis b/w

l.e., the zero of f is on interval
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Tm = — 5 f(z) = e —cosz Use radians!
Iter m = 2:
zg = 1.0, y,= flz,) = f(1) = -0.1724..., } From the
z, = 1.5, y. = f(z,) = f(1.5) = +0.1523..., previous slide.
T, + I,
B = —— = . Ym = flz,) = —0.02881...
Sign Test: il Y Ur

So the zero of f is b/w

l.e., the zero of f is on interval
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B = ——" f(x) = e —cosz Use radians!

Iter n = 3:

z, = 1.5, ¥, = flz.) = f(1.5) = 40.1523..., previous slide.
z, — % = oy = f(z,,) = +0.05829..
Sign Test: e  Om O

So the zero of fis b/w

l.e., the zero of f is on interval
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- Use radians! y, = f(1) = —0.1724 2286...
£ —
Ty = — 5 f(z) = e —cosx = f(2) = +0.5514 8211 ...

n ) L, Z,. Y Yy A - xﬁ'

1 1.0000 0000 1.5000 0000R 2.0000 0000 +0.152392 R —|— 0.5000 0000

/

2 1.0000 0000 1.2500 0000L 1.5000 0000 —0.028817 L ~ + 0.2500 0000

3 1.2500 0000 1.3750 0000R 1.5000 0000 +0.058291 R + 0.1250 0000

/

4 1.2500 0000 1.3125 00001 1.3750 0000 +0.013712 R  + 0.0625 0000

/

5 1.2500 0000 1.2812 50007 1.3125 0000

=

6 1.2812 5000 1.2968 7500k 1.3125 0000 —  +0.002876 R + 0.0156 2500

—0.007827 L ~+ 0.0312 5000

MATH-305 Numerical Methods --- Bisection. Copyright © 2017-25 by Kevin G. TeBeest. Disseminating or copying without permission is prohibited.
12

1/21/2025



|So|ve flz) = 0 forx

When do we stop iterating? As we iterate, we should see that

a) the approach
b) the difference b/w approaches :
c) the of the interval containing zero z decreases to

That means that each of these 3 quantities becomes

Therefore...
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|So|ve flz) = 0 forx

Possible Stopping Tests

Let TOL, called a , denote some positive

no. of our choosing. We stop iterating and accept the last x,,, as our approx.

of zero z when:

a)
b)
c) IST
The latter is called the (our favorite).
Remember the importance of understanding !
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|So|ve flz) = 0 forx

Observations:

1. Ateachiter’n, the of interval [z,,z,.] is

2. Since both x,,, and z are on that interval, their difference

the interval’s length:

3. Consequently, the interval length is

In our ex, the interval length after 6 iter’s is , SO
(Actual error: | Errorg| = 0.004179...)
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. . Solve f(z) = 0 forx
Error Bound in using x,, to approx zero z: | ‘

g )

So if we use the interval stopping test — stop iterating when

IST
then our tolerance TOL is an
(EB.2)
So unlike the other stopping tests, with the IST our tolerance TOL
represents the we will !
Furthermore:
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Let L = b — a denote the length of the starting interval [a, b].

Then the error:

1. after 1 bisection is

| Error; | <

2. after 2 bisections is
| Errory | <

3. after 3 bisections is
| Errorg | <

n. after n bisections is
Error, | <
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|So|ve flz) =0 for 1"

So the error bound after n bisections is

Error, | < (EB.3)
l.e., the nth iterate a:,g,?) must be within units of the zero z of f.
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|50|ve flz) = 0 for I‘

|So|ve flz) =0 for 1"

[ | Error,, | <

b—a
2n

(EB.3)

]

Example 3.
Supp. ftn f(x) satisfies the IVT on interval [-2, 6]. Determine the error

bound if we bisect times.

' Error- | <

units of zero z .

If we can tolerate that much error, then we bisect 7 times and accept a:g,? ;

So the 7th iterate xfjj must be within
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b—a
Example 4. | Error,, | < —
Supp. ftn f(x) satisfies the IVT on interval [-2, 6]. How many times should
we bisect to ensure the error 10-37?
ANS. We set the error bound to and for
b—a set —
=107 =
21’L
H =
Error
Bound —
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|So|ve flz) = 0 forx

=
=
e n —
So bisecting times ensures that the error will not exceed 103 units.
C O
_ Always rework ALL of my exs
Standing
. successfully yourself before
Assignment .
attempting the HW!
MATH-305 Numerical Methods --- Bisection. Copyright © 2017-25 by Kevin G. TeBeest. Disseminating or copying without permission is prohibited. 21 ’
|So|ve flz) = 0 forx
C O
Mathematical Aside:
Real numbers u and v agree to d decimal places if
@ L J

So if we choose TOL of the form TOL = 0.5 x 10™¢ and stop iterating when

then z,, agrees with = to decimal places.
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Examp|e 5 |So|ve flz) =0 for 1"
Using the starting interval [-2, 6], how many times must we bisect to
guarantee decimal place agreement b/w z,,, and z?
set
|$'r — Iy I -
b—a
= = —>
2n
6 —(—2
(-2 _
27’?,
— 2" = 8 So bisecting times ensures that x,,
0.5 x 10—4 )
agrees with z to dec. places.
o C O
You should rework this ex!
MATH-305 Numerical Methods --- Bisection. Copyright © 2017-25 by Kevin G. TeBeest. Disseminating or copying without permission is prohibited. 23 ’

|So|ve flz) =0 for 1"

Properties of Bisection Mthd

1. Itisan mthd. At each iter’n, we possess an interval 2, , ]

that contains zero z.

2. ltgives -sided convergence toward zero z:
3. B/cof Prop 2, the shrinks to , allowing us
to use the IST: Stop iterating when
IST
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|So|ve flz) = 0 forx

B/c of the IST, our tolerance TOL truly represents an error

(EB.2)
B/c of the IST, choosing TOL of the form 0.5 x 10~¢ ensures that
x,, agrees with zeroz to dec. places.
Converges than other mthds as we’ll see.
Gives a linear rate of convergence to z:
Digits ~ kn.
°
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|So|ve flz) = 0 forx
Dec. Place Conv. Iterations
1
2
3
4
5
6
This mthd gives a rate of convergence:
accuracy is approx. proportional to n —
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READ. Try to answer these questions before reading the answers!

7

1. Explain why Bisection mthd cannot be used to approx. the zero shown, where ftn

f touches the = axis tangentially at zero z without crossing through the x axis.

2. How would you approach this problem? AY
Answers: f(x)
L. If one selects a small starting interval [a, D]
containing zero z, then f(a) and f(b) will not T
have opposite signs, so the conditions of the \ >
Z

Intermediate Value Thm will not be satisfied.

2. Since f touches the x axis tangentially at z = z, then x = z is a zero of both f(z) and f'(z).

Furthermore, f’(x) changes sign across © = z. So we may apply Bisection to ftn f'(z).
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NOTE:
It might be tempting to select our tolerance TOL to be very small, such as

7

107, for example. This can be problematic! Recall the number machine epsilon

from previous notes. It is possible that we select TOL to be so small that the
the stopping test
|z, —x,| < TOL

is never satisfied, in which case the code might never stop iterating, even

though our iterates ajq(ff) become extremely close to zero z of f(x).

Recall that you are to study all pages of the notes, including those pages not

covered in class. They are usually marked with M
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(" Bisection Method Algorithm ) #
With (z,,y,) and (z,,,) in hand:

Recall that an
algorithm is NOT a
code.

1. Compute iterate z,,.
2. Compute y,, = f(z,,)-
3. Apply the Sign Test (IVT):

If y, and y,,, have opp. signs,

store z,,, in z,, and y,, and y,.
Otherwise

store z,, inx, and y,, and y,.

4. Print: iteration number, z,,, and f(x,,).

Repeat Steps 1 — 4 until the IST is satisfied.

\_ )
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